US009106479B1

a2z United States Patent (10) Patent No.: US 9,106,479 B1
Mukerji et al. (45) Date of Patent: *Aug. 11, 2015
(54) SYSTEM AND METHOD FOR MANAGING 6,091,737 A * 7/2000 Hongetal. 370/431
NETWORK COMMUNICATIONS 6,249,868 B1* 6/2001 Shermanetal. ... 713/168
6,298,445 Bl 10/2001 Shostack et al.
. .s . 6,341,129 B1* 1/2002 Schroederetal. 370/354
(75) Inventors: Arindum Mllkel:]l, Seattle, WA (US); 6.400.729 B1* 6/2002 Shimadoi etal. 370/466
Jesse A. Rothstein, Seattle, WA (US) 6,434,620 B1* 8/2002 Boucher et al. . 709/230
6,487,666 Bl 11/2002 Shanklin et al.
(73) Assignee: F5 Networks, Inc., Seattle, WA (US) 6,563,821 Bl1* 52003 Hongetal. 370/389
6,643,259 B1* 11/2003 Borellaetal. 370/231
s fhae : : . : 6,674,722 B1* 1/2004 Tiainen et al. 370/236
(*) Notice: Subject.to any dlsclalmer,. the term of this 6714985 BL* 32004 Malagrino et al. ... 709/236
patent is extended or adjusted under 35 6,721,798 B1* 4/2004 KubiSta ...ovvovvrererererenn. 709/236
U.S.C. 154(b) by 3149 days. 6,772,334 Bl 82004 Glawitsch
This patent is subject to a terminal dis- (Continued)
claimer.
OTHER PUBLICATIONS
(21) Appl. No.: 10/721,565 Wikipedia, OST model, pp. 1-13.*
(22) Filed: Nov. 25, 2003 (Continued)
Related U.S. Application Data Primary Examiner — Backhean Tiv
(60) Provisional application No. 60/486,628, filed on Jul. (74) Attorney, Agent, or Firm — John W. Branch; Lowe
10, 2003. Graham Jones PLLC
(51) Imnt.ClL
HO04L 29/08 (2006.01) 7 ABSTRACT
HO4L 12/805 (2013.01) A system and method is directed to managing network com-
(52) US.CL munications and improving network security. In a communi-
CPC HO4L 29/08009 (2013.01); HO4L 29/08045 cation protocol, an improved method of generating a value
(2013.01); HO4L 29/08072 (2013.01); HO4L that encodes information received in an incoming message,
47/36 (2013.01) and a corresponding way of validating an incoming message
(58) Field of Classification Search with an encoded value, improves network security. A tech-
CPC .. HO4L 29/08; HO4L 29/08072; HO4L nique for directing a network device to delay communications
29/08045; HO4L 69/16; HO4L 47/193; HO4L includes sending an instruction designating an initial window
63/166 size of zero to the device. Another technique uses a TCP fast
USPC oo 709/237, 223,227 retransmit protocol. The techniques can be used to provide
See application file for complete search history. layer four switching, change to layer seven switching when
desired, and then change back to layer four switching to
(56) References Cited improve security in a layer four switching device. Levels of

U.S. PATENT DOCUMENTS

9/1998 Matsuzono
9/1999 Deneker

5,809,254 A *
5,958,053 A

................... 709/235

trust can also be used to selectively perform aspects of the
invention.

6 Claims, 14 Drawing Sheets

724

01234567890123458789012345078901 8

I

US 9,106,479 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,816,910 B1* 11/2004 Ricciullicccoeveinnine 709/237
7,032,037 B2* 4/2006 Garnett et al. . 71072
7,088,735 B1* 8/2006 Reohretal. . . 370/466
7,206,283 B2* 4/2007 Changetal. 370/230
7,254,133 B2* 8/2007 Govindarajan etal. 370/394
7,275,093 B1* 9/2007 Freedetal. 709/223
7,298,746 B1* 11/2007 De La Iglesia et al. .. 370/394
7,366,096 B2* 4/2008 Swami 370/231
7,430,755 B1* 9/2008 Hughesetal. .. o 726/3
7,483,990 B2* 1/2009 Baratakke et al. 709/227
7,490,162 B1* 2/2009 Masters 709/238
7,774,484 B1* 8/2010 Masters et al. ... 709/229
2001/0042200 Al* 11/2001 Lambertonetal. 713/151
2002/0031134 Al 3/2002 Poletto et al.
2002/0035636 Al* 3/2002 Gitselsetal. 709/230
2002/0035681 Al* 3/2002 Maturanaetal. ... 713/151
2002/0055983 Al* 5/2002 Goddard 709/217

2002/0095492 Al 7/2002 Kaashoek et al.

2002/0101819 Al 8/2002 Goldstone

2002/0138643 Al 9/2002 Shin et al.

2002/0141448 Al* 10/2002 Matsunaga 370/469

2002/0194342 Al1* 12/2002 Luetal. 709/227

2002/0194350 Al* 12/2002 Luetal. 709/229
2003/0016819 Al* 1/2003 Chengccccocoveievvviinnns 380/2
2003/0035370 Al 2/2003 Brustoloni

2003/0043788 Al* 3/2003 Hasegawaetal. ... 370/352

2003/0046394 Al*
2003/0110286 Al*
2003/0165160 Al*
2003/0177154 Al*
2004/0062267 Al*
2004/0111635 Al*

3/2003 Goddard et al.
6/2003 Antaletal. ...
9/2003 Minami et al.
9/2003 Vrancic ...
4/2004 Minami et al.
6/2004 Boivie et al. .

... 709/226
... 709/236
.... 370/466
... 708/160
... 370/463
... 713/201
.. 370/252

2004/0165538 Al* 82004 Swami
2004/0165588 Al* 82004 Pandya 370/389
2005/0165966 Al* 7/2005 Gaietal. ... 709/249

2005/0210243 Al* 9/2005 Archard etal. 713/160
2007/0005777 Al* 1/2007 Fremantle et al. ... 709/228
2007/0206634 Al* 9/2007 Lotteretal. 370/469

2007/0253430 Al* 11/2007 Minami etal. '370/395.52
2008/0104390 Al* 5/2008 VanHeyningen etal. 713/151

OTHER PUBLICATIONS
Wikipedia, Transport Layer, pp. 1-5.*

Bell Laboratories, “Layer 4/7 Switching and Other Custom IP Traffic
Processing using the NEPPI API,” Bell Laboratories, Lucent Tech-

nologies, Mar. 1, 2000, 11 pages, http://www.bell-labs.com/project/
webswitch/Gryph__im/APAHBFEK .pdf.

Bernstein, D.J., “Syncookies 1996.txt (SYN Flooding [info]),” Sep.
16, 1996, 1 page, http://cr.yp.to/syncookies/idea.

Bernstein, D.J., “Syncookies discussion 1996.txt,” Sep. 25, 1996, 17
pages, http://cr.yp.to/syncookies/archive.

Bernstein, D.J., “SYN cookies,” Jan. 31, 2002, 3 pages, http://cr.yp.
to/syncookies.html.

EventHelix.com, “TCP—Transmission Control Protocol (TCP Fast
Retransmit and Recovery),” TCP/IP Sequence Diagrams, Mar. 28,
2002, 6 pages, EventHelix.com, Gaithersburg, http://www.
eventhelix.com/RealtimeMantra/Networking/TCP_Fast Retrans-
mit_and_ Recovery.pdf.

Google Cache, “SYN Cookies,” http://liquifried.com/docs/security/
scookies.html, May 13, 2003, 2 pages, http://www.google.com/
search?q=cache:c7bbJFZR9q0C :www.liquifried.com/docs/secu-
rity/scookies htm1+%22syn+&hl=en&ie=UTF-8.

Karig, David, Lee, Ruby, “Remote Denial of Service Attacks and
Countermeasures,” Princeton University Department of Electrical
Engineering Technical Report CE-1.2001-002, Oct. 2001, 17 pages,
Princeton University, Princeton.

Lemon, Jonathan, “SYN Cookies,” USENIX.com, Dec. 4, 2001, 3
pages, http://www.usenix.org/publications/library/proceedings/
bsdcon02/full__papers/lemon/lemon__html/node9.html.

Peng, Tao, Leckie, Christopher, Ramamohanarao, Kotagiri, “Detect-
ing distributed denial of service attacks using source IP address
monitoring,” 14 pages, Nov. 2002, Department of Electrical and
Electronic Engineering, Melbourne, Victoria, http:/www.ee.mu.oz.
aw/__pgrad/taop/research/detection.pdf.

Snooeren, Alex C., Partridge, Craig, Sanchez, Luis A., Jones, Chris-
tine E., Tchakountio, Fabrice, Schwartz, Beverly, Kent, Stephen T.,
Strayer, W. Timothy, “Hash-Based IP Traceback”, IEEE/ACM Trans-
actions on Networking (ToN), Dec. 2002, 12 pages, vol. 10, No. 6,
http://citeseer.ist.psu.edu/peng02detecting html.

Stevens, W., “TCP Slow Start, Congestion Avoidance, Fast Retrans-
mit, and Fast Recovery Algorithms,” Jan. 1997, 6 pages, Network
Working Group, NAO.

Wang, Haining, Zhang, Danlu, and Shin, Kang, G., “Detecting SYN
Flooding Attacks,” EECS Department, The University of Michigan,
2002, 10 pages, www.cs.wm.edu/~hnw/paper/attack.pdf.

Welch, Von., “A User’s Guide to TCP Windows,” National Center for
Supercomputing Applications, Jun. 19, 1996, http://www.ncsa.uiuc.
edu/People/vwelch/net_perf/tcp_ windows. html.

Dougles E. Comer and John C. Lin, “Probing TCP Implementations,”
USENIX Summer 1994 Conference, pp. 1-11.

* cited by examiner

U.S. Patent

Aug. 11, 2015

CLIENT

102
/_—

Sheet 1 of 14 US 9,106,479 B1

104
CLIENT ——'//’——

106

_///’—-108
ROUTER

/—110
SERVER ARRAY CONTROLLER

|

SERVER

‘\

SERVER SERVER

112

S S

114 116

FIG. 1

U.S. Patent Aug. 11, 2015 Sheet 2 of 14

US 9,106,479 B1

unit

202—__| central processing

I

l

Memory

Operating
system

-

Layer 4 switching

-

Layer 7 switching

-

Syn cookie module

Program code

AY

ROM

206 /}30
216
208 ASIC
—218 | Disk drive
/21 2

220

Network

interface
~—224 unit
~—226
214

FIG. 2

U.S. Patent Aug. 11, 2015 Sheet 3 of 14

303
e

TCP CLIENT

308
1SYN |

[Client Initial Sequence
Number (CISN)]

US 9,106,479 B1

306
/

TCP SERVER

310

SYN-ACK

I [Server ISN]

312
N ACK i

[Ack SISN+1]

FIG.

[Ack CISN+1]

U.S. Patent

404
L

Aug. 11, 2015 Sheet 4 of 14

(Start)

v

Perform layer 4 switching between

client(s) and server(s)

v

406\

Receive SYN packet from client

412
L

414

\

408

Threshhold No

US 9,106,479 B1

exceeded?

Perform layer 7 syn cookie
process

Perform TCP handshake with
server

-
<

410

v

Forward

to Server

A 4

416
\

Perform layer 4 switching
between client and server

FIG. 4

U.S. Patent

Time

Aug. 11, 2015

Sheet 5 of 14

S

RER

102
CLIENT | —" Traffic /—/
Manager
504\
SYN >
|_~506
SYN-ACK
508
/T\/
ACK

110

1/ /510

US 9,106,479 B1

112
Server

SYN

)

/_\/512

< SYN-ACK

ACK

/5/514

Data

)

Data

FIG. 5

U.S. Patent Aug. 11, 2015 Sheet 6 of 14 US 9,106,479 B1

(Start)
6041 v

Compute
Hash1 (Src IP, Src Port, Dest
IP, Dest Port, CISN+1)

606\

Retrieve current random
number, MSS map

608
\

Compute Hash2 (hash1,
Rand)

610
U

Combine MSS entry with
result to produce SISN

FIG. 6

U.S. Patent

702\

706

722 \

MSS
Table

720

Aug. 11, 2015

0543C38B

Sheet 7 of 14

1
0B3867AE
15AD3378

./’77\

716

US 9,106,479 B1

712

724

01234567890123456789012345678901 8

il

il

g]

FIG. 7

U.S. Patent Aug. 11, 2015 Sheet 8 of 14 US 9,106,479 B1

(Start)

) 4

804
1 Retrieve MSS map M

806\ Determine MSS entry

number N

|

8
80 1 For each bit i of MSS entry

number

A

810
\ Set bit M.i in SISN to N.i

\ 4

812\ Until all bits of MSS entry are set

A

814 Fill in remaining bits of SISN with
Hash value

FIG. 8

U.S. Patent Aug. 11, 2015 Sheet 9 of 14 US 9,106,479 B1

(Start)

A

Set entry ptr to current entry in
RS-MSS table 0

N

A 4

For each entry in RS-MSS /\/906
table

»

Retrieve random seed, MSS
map values from entry ptr
entry

910

ACK packet
validated?

Set entry ptr to previous entry

932
"\
| 930
: B

934
Until no more entries /\/ ACK packet valid

A 4

936
ACK invalid /\/ y
Abort process { Done)
Drop packet

A
{ Done)

FIG. 9A

U.S. Patent Aug. 11, 2015 Sheet 10 of 14

(Start)

A 4

912
4

Compute

Hash1 (Src IP, Src Port, Dest IP, Dest Port, CISN)

A 4

914
T\

Compute Hash2 (hash1, Rand)

A 4

916
K

Use MSS map to extract ACK
hash value

A 4

Compare Hash2 with
extracted ACK hash value

920

924
\'\

Values Yes

US 9,106,479 B1

match?

No

922

L~

ACK packet not validated

ACK packet valid

FIG. 9B

U.S. Patent

Aug. 11, 2015

Sheet 11 of 14 US 9,106,479 B1

102 110 112
CLIENT /-/ Traffic /—/ Server /~/
Manager
Time
10041
Tt [SYN :>
1006
T2 <SYN-ACK; Window size ==
’\/1 008
T3 | ACK 5 //_//3010
| T4 022 SYN >
//__//) 1012

ACK; Window size ==

SYN-ACK; Window size == N |

x

/016

1014
ACK y\/

1002 FIG. 10

hrd | Data >
[T9 < Data]
L1030 1020

U.S. Patent Aug. 11, 2015 Sheet 12 of 14 US 9,106,479 B1

(Start)
1104\ v

Perform TCP handshake with client,
passing initial zero window size

110 v
| Begin TCP handshake with

server

A 4

110
8\ Receive SYN-ACK packet
[from server

A

111
Forward server ACK packet to

client, maintaining window size

A 4

1112
_ Complete TCP handshake
with server

A

R 14\ Perform layer 4 switching
between client and server

FIG. 11

U.S. Patent Aug. 11, 2015 Sheet 13 of 14 US 9,106,479 B1

CLIENT Traffic Server
Manager
Time
1204\
[T1 [SYN >
/__/1206
T2 < SYN-ACK
/J1208
T3 | ACK > /121 0
| T4 SYN >
| Data > 1212
RES < SYN-ACK |
1230
1214
16 ACK >/\/
ACK |~ 1232
L~ 1234
. i ACK
ACK L~——1236
1238
| 5ata >
1 < Data |
Y \1250 | \
1240

FIG. 12

U.S. Patent Aug. 11, 2015 Sheet 14 of 14 US 9,106,479 B1

(Start)

1302
1304\
h 4
Determine trust level
130
High
Low Ql? ¢}
Medium
131 131
Drop Drop
packet? packet?
X
(Done)
1308
\ 4 A 4 F)

Perform layer 7
syn cookie process

|

FIG. 13

US 9,106,479 B1

1
SYSTEM AND METHOD FOR MANAGING
NETWORK COMMUNICATIONS

RELATED APPLICATION

This application is a Utility Patent application based on a
previously filed U.S. Provisional Patent application, U.S. Ser.
No. 60/486,628 filed on Jul. 10, 2003, the benefit of the filing
date of which is hereby claimed under 35 U.S.C. §119(e).

FIELD OF THE INVENTION

The present invention relates to computer networks and,
more particularly, to a system and method for improving
network security.

BACKGROUND OF THE INVENTION

Much of the traffic on the Internet uses the Transmission
Control Protocol (TCP). TCP is considered to be layer four, or
the transport layer, of a seven-layer protocol stack as defined
by the ISO-OSI (International Standards Organization-Open
Systems Interconnection) framework. Layer seven is referred
to as the application layer of the protocol stack. TCP is speci-
fied in RFC 793, available at http://www.fags.org/rfcs/
rfc793 html. RFC 879, available at http://www.fags.org/rfcs/
rfc879.html, discusses the maximum segment size, an
optional feature within TCP that allows a data receiver to
specify the maximum size TCP segment that can be accepted
on a connection.

The TCP protocol includes a handshake to establish a
connection between a client and a server. The server receives
an initial packet, called a synchronization (SYN) packet from
the client. The server responds by sending the client a SYN-
ACK packet. The client then responds by sending the server
an acknowledgment (ACK) packet. In response to receiving
the SYN-ACK packet, the server may devote resources to the
potential connection. If the server doesn’t receive an ACK
packet from the client, the devoted resources may not be
utilized, and might be unavailable to other connections. If one
or more clients send numerous SYN packets to a server, the
server’s resources may be exhausted, and it is at least tempo-
rarily unavailable for additional connections from clients.
The process of sending numerous SYN packets to a server
without completing the connections is known as SYN flood-
ing.

FIG. 3 illustrates a basic TCP handshake between a TCP
client 303 and a TCP server 306. The TCP client initiates a
handshake by sending a SYN packet 308 to the TCP server
306. The TCP server can be a server such as servers 112-116
of FIG. 1, a server array controller such as server array con-
troller 110 of FIG. 1, or another network device. The SYN
packet includes a client initial sequence number (CISN). The
CISN is typically a random or pseudo-random number gen-
erated by the TCP client.

In response to receiving the SYN packet, the TCP server
306 sends a SYN-ACK packet 310 to the TCP client 303. The
SYN-ACK packet includes a server initial sequence number
(SISN) and the sequence number of the next packet expected
from the client. This number is typically the CISN number
plus one. The SISN number is typically a random or pseudo-
random number. The TCP server also typically uses some
memory to record the CISN and the SISN, and may reserve
memory for the expected TCP connection.

In response to receiving the SYN-ACK packet 310 from
the TCP server 306, the TCP client 303 sends to the TCP
server an ACK packet 312. The ACK packet 312 includes the

10

15

20

25

30

40

45

50

55

60

65

2

sequence number of the next packet expected from the TCP
server. This number is typically the SISN number plus one.

When a SYN flood occurs, the TCP server 306 receives
numerous SYN packets, and does not receive corresponding
ACK packets. This results in a substantial amount of memory
that is allocated by the TCP server, and may result in a
decreased ability or an inability to establish additional TCP
connections or to perform other functions of the TCP server.

TCP cookies were developed as a defense to TCP flooding.
In the TCP cookie technique, in response to receiving a SYN
packet, a TCP server generates an SISN that is a function of
the CISN received in the SYN packet, the TCP client’s IP
address, and a secret value. When the TCP server receives a
corresponding ACK packet 312 from the TCP client 303, it is
able to determine the validity of the ACK packet by calculat-
ing a function based on values in the ACK packet 312, and
comparing the result with the incoming acknowledgment
number. If the values match, the TCP server knows that a valid
TCP handshake has been performed, and can allocate
resources at that time, instead of allocating the resources in
response to the SYN packet 308. A discussion of SYN cook-
ies can be found in a paper by Dan Bernstein, available at
http://cr.yp.to/syncookies.html.

Therefore, it is with respect to these considerations and
others that the present invention has been made.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present invention are described with reference to the follow-
ing drawings. In the drawings, like reference numerals refer
to like parts throughout the various figures unless otherwise
specified.

For a better understanding of the present invention, refer-
ence will be made to the following Detailed Description of the
Preferred Embodiment, which is to be read in association
with the accompanying drawings, wherein:

FIG. 1is a system diagram of a computer network in which
the invention may be practiced;

FIG. 2 is a block diagram of an exemplary network device
that may be employed to perform the invention;

FIG. 3 illustrates a TCP client—TCP server message flow,
in accordance with a TCP protocol;

FIG. 4 is a flow chart illustrating a process for performing
packet communications, in accordance with an embodiment
of the present invention;

FIG. 5 illustrates a message flow combining layer 4 switch-
ing and layer 7 switching, in accordance with an embodiment
of the present invention;

FIG. 6 is a flow chart illustrating a process for determining
an initial sequence number, in accordance with an embodi-
ment of the present invention;

FIG. 7 illustrates a data structure for maintaining random
seeds, in accordance with an embodiment of the present
invention;

FIG. 8 is a flow chart illustrating a process for creating an
initial sequence number, in accordance with an embodiment
of the present invention;

FIGS. 9A-B are flow charts illustrating a process for vali-
dating a packet, in accordance with an embodiment of the
present invention;

FIG. 10 illustrates another message flow combining layer 4
switching and layer 7 switching, in accordance with an
embodiment of the present invention;

FIG. 11 is a flow chart illustrating a process for performing
switching between a client and a server, in accordance with an
embodiment of the present invention;

US 9,106,479 B1

3

FIG. 12 illustrates a message flow combining layer 4
switching and layer 7 switching, in accordance with an
embodiment of the present invention; and

FIG. 13 illustrates an aspect of the invention involving
levels of trust that can be employed in some embodiments of
the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention now will be described more fully
hereinafter with reference to the accompanying drawings,
which form a part hereof, and which show, by way of illus-
tration, specific exemplary embodiments by which the inven-
tion may be practiced. This invention may, however, be
embodied in many different forms and should not be con-
strued as limited to the embodiments set forth herein; rather,
these embodiments are provided so that this disclosure will be
thorough and complete, and will fully convey the scope of the
invention to those skilled in the art. Among other things, the
present invention may be embodied as methods or devices.
Accordingly, the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment or an embodiment combining software and hardware
aspects. The following detailed description is, therefore, not
to be taken in a limiting sense.

Throughout the specification and claims, the following
terms take the meanings explicitly associated herein, unless
the context clearly dictates otherwise.

The phrase “in one embodiment™ as used herein does not
necessarily refer to the same embodiment, though it may.

As used herein, the term “or” is an inclusive “or” operator,
and is equivalent to the term “and/or”, unless the context
clearly dictates otherwise.

The term “based on” is not exclusive and allows for being
based on additional factors not described, unless the context
clearly dictates otherwise.

Throughout the specification, the meaning of “a,” “an,” and
“the” include plural references. The meaning of “in” includes
“in” and “on.”

Briefly stated, the present invention is directed to a system,
apparatus, and method for improving security in a network
device that performs a communications protocol with another
network device.

FIG. 1 illustrates an exemplary environment 100 in which
the invention operates, according to one embodiment of the
invention. The environment 100 includes a network 106. The
network 106 can be a wide area network (WAN), a local area
network (LAN), or a combination of interconnected WAN's
and LANs. The Internet is made up of a vast number of such
interconnected networks, computers, and network devices
that use the Transmission Control Protocol/Internet Protocol
(“TCP/IP”) suite of protocols to communicate with one
another. The environment further includes client devices 102-
104 (also referred to as clients), router 108, server array
controller (SAC) 110, and a server array. The server array
includes servers 112-116. The invention can be practiced in
an environment with one server or numerous servers. Net-
work 106 couples clients 102-104 to the server array control-
ler 110 through the router 108. Server array controller 110
couples the server array to network 106 through the router
108. An exemplary server array controller that can connect
with network 106 is network device 200 of FIG. 2. A router
108 is an intermediary device on a communications network
that expedites packet delivery.

Clients 102-104 are computing devices capable of con-
necting with network 106. The set of such devices can include

10

15

20

25

30

35

40

45

50

55

60

65

4

devices that connect using one or more wired communica-
tions mediums, a wireless communications medium, or a
combination of wired and wireless communications medi-
ums. Clients 102-104 include such devices as personal com-
puters, multiprocessor systems, microprocessor-based or
programmable consumer electronics, network PCs, cell
phones, smart phones, pagers, PDAs, Pocket PCs, wearable
computers, walkie talkies, radio frequency (RF) devices,
infrared (IR) devices, CBs, integrated devices combining one
or more of the preceding devices, and the like.

Servers 112-116 are computing devices that provide infor-
mation and/or services to clients 102-104. Servers 112-116
can, for example, store web pages or components thereof,
dynamically create web pages or components thereof, store
data and/or files for access by other servers or clients, or any
combination of these functions.

In general, clients 102-104 are sites where a human user
operates the computing device to make requests for data or
services from other computers on the network, though a client
can be automated and not require a human user. Often, the
requested data resides in computing devices such as servers
112-116. In this specification, the term “client” refers to a
computer’s general role as a requester of data or services, and
the term “server” refers to a computer’s role as a provider of
data or services. In general, it is possible that a computer can
act as a client, requesting data or services in one transaction
and act as a server, providing data or services in another
transaction, thus changing its role from client to server or vice
versa.

Server array controller 110 receives packets from network
106, through the router 108, and also receives packets from
the servers 112-116. In some configurations, server array
controller 110 acts like a layer 7 switch. That is, it may look
at content associated with layers 5 through 7 of the packet,
e.g. a request for an HTML page, the request including a
Uniform Resource Locator (URL) and information that iden-
tifies the user, such as a cookie, etc. It can store information in
memory so that the next time the requestor requests more
information from the same web site each request is sent to the
same server. A server array controller 110 can do this, in part,
to ensure that the user is connected to the server that the user
previously connected to. This helps prevent the loss of trans-
action data, such as items in an electronic shopping cart. A
layer 7 switch may facilitate a communication between a
client and a server by terminating a client-side TCP connec-
tion with the client, terminating a server-side TCP connection
with the server, and using both connections to receive, pro-
cess, and forward data between the client and the server.

In some configurations, server array controller 110 per-
forms as a layer 4 switch. That is, it receives a packet, such as
a TCP packet, from one of the clients 102-104, minimally
processes the packet, and forwards the packet to one of the
servers 112-116 based on transport layer information. As a
layer 4 switch, the server array controller 110 does not termi-
nate TCP connections with either the client or the server.
Instead, a server 112-116 performs a TCP handshake with a
client 102-104, and the server array controller serves as an
intermediate network device, forwarding packets between the
client and the server. As a layer 4 switch, the server array
controller may make filtering and switching decisions based
on layer 4 data within a packet, such as an IP address. It may
also modify source or destination addresses on TCP packets
prior to forwarding them, a process known as network address
translation (NAT). The BIG-IP® family of traffic managers,
by F5 Networks of Seattle, Wash., are examples of traffic
managers that perform layer 4 switching or layer 7 switching.

US 9,106,479 B1

5

FIG. 2 shows an exemplary network device 200 that can
operate as a server array controller in accordance with the
present invention. It will be appreciated that not all compo-
nents of network device 200 are illustrated, and that network
device 200 can include more or fewer components than those
shown in FIG. 2. Network device 200 can operate, for
example, as a router, bridge, firewall, gateway, traffic man-
agement device (also referred to as a traffic manager), dis-
tributor, load balancer, server array controller, or proxy
server. It is to be noted that these functions are not necessarily
distinct from each other. For example, a traffic manager may
perform load balancing and control an array of servers. The
communications can take place over network 106 (FIG. 1), or
some other communications network known to those skilled
in the art.

As illustrated in FIG. 2, network device 200 includes a
central processing unit (CPU) 202, mass memory, and a net-
work interface unit 212 connected via a bus 204. Network
interface unit 212 includes the necessary circuitry for con-
necting network device 200 to network 106, and is con-
structed for use with various communication protocols,
including the TCP/IP protocol. Network interface unit 212
can include or interface with circuitry and components for
transmitting messages and data over a wired and/or wireless
communications medium.

The mass memory generally includes random access
memory (“RAM”) 206, read-only memory (“ROM”) 214,
and one or more permanent mass storage devices, such as
hard disk drive 208. The mass memory stores operating sys-
tem 216 for controlling the operation of network device 200.
The operating system 216 may comprise an operating system
such as UNIX®, LINUX®, or Windows®.

In one embodiment, the mass memory stores program code
for performing layer 4 switching 218, and program code for
performing layer 7 switching 220, in accordance with the
present invention. The mass memory may also store program
code for implementing a Syn cookie module 224, in accor-
dance with the present invention. The mass memory can also
store additional program code 226 and data for performing
the functions of network device 200. The layer 7 switching
module 220, the Syn cookie module 224, and the layer 4
switching module 218 can include data for performing their
respective functions, or the data can be stored separately in
the memory 206 or in another storage location.

In one embodiment, the network device 200 includes one
or more Application Specific Integrated Circuit (ASIC) chips
230 connected to the bus 204. The ASIC chip 230 includes
logic that performs some of the functions of network device
200. For example, in one embodiment, the ASIC chip 230
performs a number of packet processing functions, to process
incoming packets in cooperation with the layer 4 switching
module 218 or the layer 7 switching module 220. In one
embodiment, the logic of the Syn cookie module 224 is at
least partly performed by the ASIC chip 230. In one embodi-
ment, the network device 200 includes one or more field-
programmable gate arrays (FPGA) (not shown), instead of, or
in addition to, the ASIC chip 230. A number of functions of
the network device can be performed by the ASIC chip 230,
by an FPGA, by the CPU 202 with the logic of program code
stored in mass memory, or by any combination of the ASIC
chip, the FPGA, and the CPU.

Computer storage media can include volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information, such as
computer readable instructions, data structures, program
modules or other data. Examples of computer storage media
include RAM 206, ROM 214, EEPROM, flash memory or

10

15

20

25

30

35

40

45

50

55

60

65

6

other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium that can store the information and that
can be accessed by a computing device.

Network device 200 can also include an input/output inter-
face (not shown) for communicating with external devices or
users.

Network device 200 can be implemented as one or more
“blades” where the term “blade” refers to one of multiple
electronic circuit boards or cards that are installed in a hard-
ware chassis with a backplane. An exemplary blade can
include one or more processors, volatile and non-volatile
memory, interfaces suitable for communicating information
to and from the blade, and other components for enabling the
operation of one or more applications. A blade can also
include a specialized interface for the backplane and other
interfaces, such as a USB port, FIREWIRE port, serial port,
RF interface, IR interface, Ethernet interface, IDE controller,
and the like. An application running on a blade can employ
any of these interfaces to communicate information to other
applications running on other blades and/or devices coupled
to the blade server. Network device 200 can also be imple-
mented as a combination of blades and additional compo-
nents in chassis.

The server array controller 110 (hereinafter referred to
simply as a “controller”) shown in FIG. 1 typically includes
one or more network interfaces, and performs one or more of
the operations of routing, translating, and switching packets.
A controller having a single network connection is also within
the scope of the present invention.

In one example of the invention, the controller is a load-
balancing server array controller. In this example, the con-
troller includes load-balancing and control logic that can be
implemented in software, hardware, or a combination of soft-
ware and hardware.

In one embodiment, the server array controller 110 intel-
ligently distributes web site connections across the server
array. The controller 110 can manage connections to one or
multiple Internet or intranet sites, and it can support a wide
variety of Internet protocols and services such as TCP/IP
(transmission control protocol/Internet protocol) and HTTP.
Additionally, the controller 110 can support any one or more
of a suite of communications protocols that are used to con-
nect nodes on the Internet, including HTTP, file transfer
(FTP), secure sockets layer (SSL), streaming media, DNS,
UDP/IP, and email (SMTP).

FIG. 4 illustrates a process 402 for performing packet
communications, in accordance with an embodiment of the
invention. In one embodiment, the process 402 is performed
in a network device such as network device 200 and/or server
array controller 110 of FIG. 1.

As illustrated in FIG. 4, after starting the process, at a block
404 the process performs layer 4 switching between one or
more clients, such as clients 102-104 of FIG. 1, and one or
more servers, such as servers 112-116 of FIG. 1. In one
embodiment incoming packets are forwarded from the client
to the server without buffering. In one embodiment, at least
some of the packets are buffered prior to forwarding to the
server.

At a block 406, a communications protocol synchroniza-
tion packet, such as a TCP SYN packet, is received from the
client. The SYN packet is used to indicate an initiation of a
new communications connection. For example, a SYN packet
received from a client may be a request to perform a TCP
handshake between the client and a server, in order to estab-
lish a TCP connection.

US 9,106,479 B1

7

Atadecision block 408, the process makes a determination
of whether a threshold has been exceeded. The threshold can
be a designated amount of a resource, such as available
memory, processor cycles, bandwidth, number of active con-
nections, or a combination of such resources. The threshold
can be a preconfigured quantity, or it can be dynamically
determined based on one or more environmental factors. In
one embodiment, a local threshold and a global threshold are
used. The local threshold refers to a specific traffic manage-
ment device, such as SAC 110. The global threshold refers to
a system of devices or a LAN. Specifically, it refers to the total
of all connections through every SAC in the system. At the
decision block 408, the process uses the lower of the two
thresholds in making the determination.

In one embodiment, one or more servers sends a signal to
the SAC 110 to indicate that a threshold has been or is close
to being exceeded, and another signal to indicate when a
resource usage has dropped below the threshold. A signal can
be encoded in packets passed to the SAC, or sent using an
API, such as the iControl network API, available from F5
Networks, of Seattle, Wash.

If, at the decision block 408, it is determined that the
threshold has not been exceeded, flow proceeds to a block
410, where the SYN packet is forwarded to a server. Prior to
forwarding the packet, the packet might be modified, such as
is done with network address translation. After forwarding
the packet at the block 410, flow proceeds to a block 416,
where layer 4 switching between the client and the server is
performed. This layer 4 switching may include receiving and
forwarding additional packets of the connection initiation
handshake protocol, data packets, or a connection termina-
tion handshake protocol.

If, at the decision block 408, it is determined that a thresh-
old has been exceeded, flow proceeds to the block 412, where
a layer 7 Syn cookie process is performed. Details of this
process are described below. After performing the layer 7
processing, flow proceeds to the block 414, where a TCP
handshake is performed with the server. Flow then proceeds
to the block 416, where layer 4 switching is performed
between the client and the server. As described above, the
layer 4 switching may include receiving and forwarding addi-
tional packets of the connection initiation handshake proto-
col, data packets, or a connection termination handshake
protocol. In one embodiment (not shown), instead of per-
forming the actions of block 416, after performing the TCP
handshakes with the client and with the server (as illustrated
by packets 504-514 of FIG. 5), the SAC (FIG. 1) performs
layer 7 switching between the client and the server for the
duration of the current communications connection.

Generally, layer 4 switching is faster than layer 7 process-
ing, and allows for a higher throughput of packets. By begin-
ning the process 402 performing layer 4 switching, and per-
forming layer 7 processing only for a subset of the packet
switching, there is a positive effect on speed and throughput.
More specifically, by using layer 7 processing to perform a
TCP connection initiation, and using layer 4 switching to
forward other packets, performance is improved. Still more
specifically, by changing to layer 7 processing to perform a
TCP connection initiation handshake when a threshold is
exceeded and using layer 4 switching at other times, perfor-
mance is improved.

In one embodiment, a significant amount of the layer 4
switching is performed by employing a special purpose pro-
cessor, such as ASIC 230 (FIG. 2) or an FPGA. Use of a
special purpose processor allows for faster processing, and
therefore higher throughput of packets. Thus the performance

10

15

20

25

30

35

40

45

50

55

60

65

8

improvements of combining layer 4 switching and layer 7
processing is further enhanced by the use of such special
purpose processors.

In one embodiment, the determination at block 408 is
based on whether a signal has been received from one or more
servers indicating that the layer 7 Syn cookie process is to be
performed. In this embodiment, the SAC does not directly
determine that a threshold has been reached, but makes a
determination based on one or more received signals. The
servers can send these signal when a threshold has been
reached, or when it has determined, for another reason, that it
is desirable to perform the layer 7 Syn cookie process. The
server can send another signal to indicate that the SAC is to
stop performing the layer Syn cookie process. The SAC can
also receive one or more signals from one or more other
network devices that determine there is a need to begin the
Syn cookie process, and make the determination at block 408
on these signals. The other network devices can be on the
same LAN as the SAC, or they can be devices remotely
located.

FIG. 5 illustrates a message flow combining layer 4 switch-
ing and layer 7 switching, and is discussed with reference to
FIG. 4. FIG. 5 illustrates a communication between a client,
such as client 102 of FIG. 1, and a server, such as server 112,
employing an intermediate network device, such as server
array controller 110. The flow of packets is illustrated with a
timeline 530, to show the sequence of events, though the units
of time are not to scale and may vary.

As illustrated in FIG. 5, the client 102 initiates a TCP
handshake by transmitting a SYN packet 504. The server
array controller (SAC) 110 receives the SYN packet, as dis-
cussed at block 406 of FIG. 4. In response, the SAC sends to
the client a SYN-ACK packet 506. The client then responds
by sending an ACK packet 508. In response to receiving the
ACK packet 508, the SAC performs a validation of the
received ACK packet. This exchange corresponds to the layer
7 syn cookie process of block 412.

The validation of the received ACK packet is illustrated in
FIG. 9, and described below. If the SAC 110 determines that
the ACK packet 508 is invalid, it “drops” the packet, and does
not proceed with the remaining message flow illustrated in
FIG. 5. This may happen as a result of a malicious or improp-
erly executing client sending an unauthorized ACK packet
508. It may also happen if an ACK packet has been exces-
sively delayed beyond a window allowed by the process as
described.

If the SAC determines that the ACK packet 508 is valid, it
continues as follows. As illustrated in FIG. 5, the SAC sends
a SYN packet 510 to the server. The server responds by
sending a SYN-ACK packet 512. The SAC then responds by
sending an ACK packet 514 to the server.

At this point, the SAC 110 has established a TCP connec-
tion as a TCP server with the client 102, and it has established
a TCP connection as a TCP client with the server 112. The
SAC changes to layer 4 switching between the client 102 and
the server 112. When the client 102 sends a data packet 516,
the SAC receives the data packet and forwards it to the server
112. When the server sends a data packet 520, the SAC
receives and forwards this data packet to the client. Typically,
the layer 4 switching includes receiving and forwarding a
number of data packets between the client and the server.
Though not shown, the client and the server perform a TCP
handshake to terminate the connection. The SAC forwards
each packet of the termination handshake, as part of the layer
4 switching.

The SYN-ACK packet 506 includes a server initial
sequence number (SISN) and the sequence number of the

US 9,106,479 B1

9

next packet expected from the client. According to the TCP
protocol, the sequence number of the next packet expected
from the client is the value of the CISN from the SYN packet
504 plus one. The SISN number is typically a random or
pseudo-random number. For simplicity, as used herein, the
term random number includes pseudo-random numbers, and
the term random includes selection of values using a predic-
tive or partly predictive algorithm. The use of a random SISN
helps to prevent a client from using an SISN value received
from one handshake in a different handshake. Thus, when a
TCP server receives, in an ACK packet from a client, a SISN
value that is valid for a handshake, the TCP server knows that
the ACK packet is valid for that handshake.

To assist in the discussion of determining an SISN value, a
brief explanation of a maximum segment size (MSS) is pro-
vided. TCP provides an option that may be used at the time a
connection is established to indicate the maximum size TCP
segment that can be accepted on that connection. This Maxi-
mum Segment Size (MSS) announcement is sent from the
data receiver to the data sender and specifies the maximum
segment size that the receiver can receive. An MSS is sent
from a TCP client in the SYN packet 504, to inform the TCP
server of the client’s desired MSS. In order to preserve the
MSS value received in a SYN packet, the TCP server main-
tains a table of selected values for the MSS, referred to as the
MSS table. The values can be selected based on providing a
range of commonly used MSS values. When a SYN packet is
received, the TCP server determines the largest value in the
MSS table that does not exceed the actual MSS value from the
SYN packet. The index of this table entry is used by the TCP
server to represent the MSS table value, which substitutes for
the actual MSS value. An MSS index value of 3 bits, corre-
sponding to an MSS table having eight entries, is commonly
used.

In accordance with one aspect of the present invention, a
TCP server, such as the SAC 110 of FIG. 1, determines an
SISN value in the following way, as illustrated in the process
602 of FIG. 6. After a start block, the process, at a block 604,
computes a first hash value that is based on fields extracted
from the received SYN packet 504. In one embodiment, the
fields used are the source IP address, the source port number,
the destination IP address, the destination port, and the value
CISN+1. The hash algorithm used to compute the hash value
can be one of a number of hash algorithms, such as MDS5 or
SHA-1.

At a block 606, the process 602 retrieves a current random
number from a table of random numbers. The process also
retrieves a current MSS mapping. The MSS mapping is used
to “hide” an MSS index in the SISN that is constructed. An
MSS mapping is a value or mapping that indicates the posi-
tions within the SISN value where an MSS index will be
inserted. In one embodiment an MSS mapping is a random
value having three numbers, each number indicating a bit
position within the SISN where a corresponding bit from the
MSS index will be inserted. In one embodiment, where an
SISN value contains 32 bits, each bit having a position from
zero to 31, an MSS mapping may be represented as jk.1,
where j, k, and 1 are values from zero to 31 inclusive, corre-
sponding to bit positions in the SISN. For example, an MSS
mapping of 22.4.8 indicates that the first bit of the MSS index
is to be placed in the 22”4 bit position, the second bit is to be
placed in the 47 position, and the third bitis to be placed in the
8 position. Note that in this embodiment, the ordering of the
values within an MSS mapping is significant, since the cor-
responding bit positions in the SISN value are not necessarily
increasing.

10

15

20

25

30

35

40

45

50

55

60

65

10

At a block 608, the process 602 computes a second hash
value, based on the first hash value and the current random
number. At a block 610, the MSS index is combined with the
second hash value, to produce an SISN value. For example, in
one embodiment, where the SISN is a 32 bit value, and the
MSS index is a 3 bit value, the second hash value is computed
to be a 29 bit value. The three bits of the MSS index are
inserted into the appropriate bit positions of the SISN, as
indicated by the MSS mapping. The bits of the second hash
value are inserted in the empty positions of the SISN, result-
ing in a 32 bit SISN value. The result is that the position of the
MSS index within the SISN is randomly selected.

Upon receiving a SYN-ACK packet 506, the SAC 110 can
extract the MSS index value and the CISN value, determine
the original MSS value or a value that approximates it, and
use these values in further TCP protocol communications
with the client or the server.

FIG. 7 illustrates a random seed—MSS mapping (RS-
MSS) table 702 containing current and recent random num-
bers 706, and current and recent MSS mapping values 704.
FIG. 7 illustrates a conceptual view of a data structure con-
taining these values, where the random values and the MSS
mappings are stored together in a single circular data struc-
ture, each entry having one random value and one MSS map-
ping value. A variety of data structures or combinations of
data structures can be used to implement this conceptual
table. Reference to the RS-MSS table includes reference to
different types of structures and access algorithms for imple-
menting such a table.

As illustrated in FIG. 7, a pointer 708 points to a current
entry 710 for the RS-MSS table. The current entry is the one
that has been most recently filled in with a random seed value
and a randomly selected MSS mapping value. The arrow 716
points in the direction of recent entries; the further along this
arrow from the pointer 708, the further back in time is the
corresponding entry. In one embodiment, each entry is the
current entry for 100 milliseconds. At the end of this time, a
new random seed value and a new random MSS mapping
value is determined, and placed in the oldest entry, overwrit-
ing the previous value that was there. The new random seed
value and the new random MSS mapping value are randomly
selected, resulting in a very low probability that any two
consecutive entries have identical values, or that any two
entries inthe RS-MSS table have identical values. The pointer
708 is then moved to the new current entry, in the direction of
the arrow 718. In this way, a circular list of entries is main-
tained. In one embodiment, the circular RS-MSS table con-
tains 40 entries, each entry being current for 100 millisec-
onds, so that an entry is valid for four seconds before it is
overwritten. Tables of different sizes and different times for
changing current entries can be employed with the invention.

FIG. 8 illustrates a process 802 of generating an SISN
value, and shows in further detail the actions of blocks 606
and 610 of FIG. 6. In the discussion of the process 802,
reference is made to FIG. 7. At a block 804, the process
retrieves the current MSS map value, M from the RS-MSS
table. Each number of the value M is referenced as M.i. Ata
block 806, an MSS index value N is determined, based on the
MSS value received in the incoming SYN packet 504 (FIG.
5). Each bit of the value N is referenced as N.i.

At a block 808, a short loop of actions is performed, with
one iteration for each number of the value M. During each
iteration, at a block 810, a bit in the SISN value being gener-
ated corresponding to the number M.i is set with the corre-
sponding bit N.i. The short loop terminates at the block 812
when all bits of the MSS index value have been inserted into

US 9,106,479 B1

11
the SISN value. At ablock 814, the remaining bits of the SISN
value are filled in with the hash value computed during the
action of block 608 (FIG. 6).

As illustrated in FIG. 7, the current entry 710 includes a
current random seed value 712 and a current MSS mapping
value 714. The illustrated current MSS mapping value 714 is
9.21.14. As described above, an MSS mapping value of
9.21.14 indicates that the three bits of the MSS table index
will be inserted in bits 9, 21, and 14 respectively, of an SISN
that is being created. FIG. 7 further illustrates an example
where an MSS table index of 101 (binary) is used to reference
entry 101 (722) in an MSS table 720. An SISN value 724
having 32 bits is illustrated. The three bits “1”, “0”, and “1”
are inserted into the SISN value at bit positions 9, 21, and 14,
respectively, during the action of blocks 808-812. The
remaining 29 bits of the SISN value 724 are filled with the 29
bits of the hash value computed during the action of block
814. As discussed in further detail below, this process is
reversed to extract the hash value and determine the MSS
value from an SISN that is received in a later packet.

As described above, in the process 802, the bit positions of
the MSS table index in the SISN varies, and as a result, the
combination of bits used to represent the hash value varies.
More specifically, the bit positions are changed every time
interval, and they are changed in a random manner. It is to be
noted that one result of using the process 802 is that the
entropy of the SISN value is not predictively reduced. The
location of the bits containing the MSS index is not fixed, and
is not easily determined by a party not having access to the
RS-MSS table, even if the process 802 is known. Because the
selection of which bits contain the hash value and which bits
contain the MSS index is obscured, the difficulty of breaking
the security of the system is increased.

When a TCP server, such as the SAC 110 of FIG. 1,
receives an ACK packet, such as ACK packet 508 (FIG. 5), the
TCP server validates that the packet is a valid packet sent in
response to a SYN-ACK packet 506 containing an SISN
value generated as described above. The TCP server does this
by following a process that is basically the reverse of the
above process. FIGS. 9A-B illustrate a process 902 of vali-
dating an ACK packet.

The process 902 illustrated in FIGS. 9A-B is performed in
response to receiving an ACK packet, such as ACK packet
508 from a client. At the time of receiving such a packet, the
SAC does not know whether the packet is a valid ACK packet
as part of a TCP handshake with the client, or whether it is an
invalid packet sent in an attempt to disrupt the SAC or the
network. Upon starting the process 902, at a block 904, an
entry pointer is set to point to the current entry 710 in the
RSS-MSS table 702 (FIG. 7). The entry pointer serves as an
index pointer for stepping through the table within the process
902.

At a block 906, the process 902 begins a loop such that,
unless the loop terminates early, an iteration of the loop is
performed for each entry in the RSS-MSS table 702. At a
block 908 within the loop, the random seed and the MSS map
value within the entry pointed to by the entry pointer are
retrieved. The first time through the loop, these values will be
the current random seed 712 and the current MSS map value
714. At a decision block 910, a determination is made of
whether the ACK packet can be validated using the retrieved
random seed and MSS map value. Details of the decision
block 910 are illustrated in FIG. 9B and discussed below.

If, at the decision block 910, a determination is made that
the ACK packet is validated, the process breaks out of the loop

10

15

20

25

30

35

40

45

50

55

60

65

12

and proceeds to a block 930, where the ACK packet is con-
sidered to be valid. At this point, the process 902 of validating
the ACK packet is complete.

If, at the decision block 910, a determination is made that
the ACK packet has not been validated based on the entry
pointed to by the entry pointer, flow proceeds to a block 932,
where the entry pointer is set to point to the previous entry in
the RS-MSS table 702. As shown in the conceptual illustra-
tion of FIG. 7, the previous entry is the next entry moving in
a counter-clockwise direction. As discussed above, each pre-
vious entry corresponds to a window of time.

At a block 934, if there are entries that have not been used
to test for validation, flow proceeds back to the top of the loop,
represented as the block 906, for another iteration of the loop.
If, at the block 934, there are no more entries, the loop termi-
nates. Flow proceeds to a block 936, where a determination is
made that the ACK is invalid. The ACK packet is dropped, and
the SYN cookie process is aborted.

FIG. 9B illustrates, in further detail, the determination of
validating an ACK packet with respect to a single RS-MSS
table entry, as represented by the decision block 910 of FIG.
9A. After starting, at a block 912, the process computes a first
hash value of the combination of the source IP, source port,
destination IP, destination port, and CISN values extracted
from the ACK packet. At a block 914, the process computes a
second hash value of the combination of the first hash value
and the random seed corresponding to the current iteration of
the loop of FIG. 9A. This is the random seed retrieved at the
block 908.

At a block 916, the MSS map value corresponding to the
current loop iteration (retrieved at the block 908) is used to
extract an ACK hash value from the SISN of the ACK packet.
In an implementation having an MSS index of three bits and
an SISN of 32 bits, this extraction involves identifying the
three bits corresponding to the MSS index, and extracting the
remaining 29 bits as the ACK hash value. For example, in the
illustration of FIG. 7, an MSS map value 0f 9.21.14 indicates
thatbits 9,21, and 14 ofthe SISN are used for MSS index, and
the remaining 29 bits indicate the ACK hash value.

At ablock 918, the extracted ACK hash value is compared
with the second hash value (computed in block 914). In a
decision block 920, if the values match, flow proceeds to a
block 922, where the ACK packet is considered to be valid. If,
at the decision block 920, the hash values do not match, flow
proceeds to a block 924, where the ACK packet is considered
to not be validated with respect to the RS-MSS entry of the
current loop iteration.

In the message flow illustrated in FIG. 5, the data packet
516 arrives at the SAC 110 after the handshake between the
SAC and the server 112 is completed and a TCP connection is
created. This allows the SAC to forward the data packet 516
as a layer 4 switch without buffering the packet. It is possible,
however, that the SAC receives a data packet from the client
102 before the connection between the SAC and the server is
established. One aspect of the invention describes amethod of
delaying the arrival of data packets from the client, or of
handling the situation where a data packet arrives prior to the
SAC to server TCP handshake completion.

FIG. 10 illustrates a message flow in accordance with an
aspect of the invention. FIG. 10 illustrates a communication
between a client, such as client 102 of FIG. 1, and a server,
such as server 112, employing an intermediate network
device, such as server array controller 110. The flow of pack-
ets is illustrated with a timeline 1030, to show the sequence of
events, though the units of time are not to scale and may vary.

As illustrated in FIG. 10, the client 102 initiates a TCP
handshake by transmitting a SYN packet 1004. The server

US 9,106,479 B1

13

array controller (SAC) 110 receives the SYN packet, as dis-
cussed at block 406 (FIG. 4). In response, the SAC sends to
the client a SYN-ACK packet 1006. A SYN-ACK packet
includes a field for specitying an initial window size. The
window size specifies the maximum amount of data that a
packet receiver is currently willing to receive. The window
size field is described in RFC 793, cited above. In one
embodiment of the invention, the SAC sets the window size in
the SYN-ACK packet 1006 to be zero or a value substantially
close to zero so as to prevent the client from sending data
packets. This has the effect of instructing the client to not send
data packets. As used herein, the term “zero window size”
refers to a specification of exactly zero or a number substan-
tially close to zero so as to bring about the desired effect of
delaying packet transmission.

The client then responds by sending an ACK packet 1008.
This completes the TCP handshake between the SAC and the
client. The SAC then performs a TCP handshake with the
server. The SAC sends a SYN packet 1010, the server
responds with a SYN-ACK packet 1012, and the server
responds to the server with an ACK packet 1014, similar to the
handshake described in FIG. 5 and related text.

As illustrated in FIG. 10, when the SAC 110 receives the
SYN-ACK packet 1012 from the server, the SAC modifies the
packet by clearing the SYN bit, forwards this modified packet
to the client, as ACK packet 1022. The SYN-ACK packet
1012 sent by the server includes a window size that is desired
by the server. The SAC allows the value for the window size
to remain unchanged in the modified ACK packet 1022. This
has the effect of instructing the client that it can send data
packets up to the specified window size. The client, upon
receiving the ACK packet 1022 can begin sending data pack-
ets. The SAC, immediately upon sending the ACK packet
1022, sends the ACK packet 1014 to the server to complete
the TCP handshake. In this way, the SAC will complete the
sending of the ACK packet 1022 before processing an incom-
ing data packet from the client.

The client can now begin sending data packets, such as data
packet 1016 to the SAC, which performs layer 4 switching
and forwards the packets to the server. The server can send
data packets, such as data packet 1020 to the SAC, which
performs layer 4 switching dns forwards these packets to the
client. The message flow 1002 therefore allows efficient com-
munications between the client and the server, through the
SAC.

FIG. 11 is a flow chart illustrating a process 1102 for using
a zero-window size to pause communications from a client, as
described above. After a start, at a block 1104, the SAC 110
performs a TCP handshake with the client 102, passing an
initial window size of zero. At a block 1106, the SAC begins
a TCP handshake with the server 112. At a block 1108, the
SAC receives a SYN-ACK packet from the server, the packet
including a specified window size. At a block 1110, the SAC
modifies the SYN-ACK packet to be an ACK packet, and
forwards the modified packet to the client, maintaining the
specified window size.

At a block 1112, the SAC completes the TCP handshake
with the server. After completing the TCP handshake with the
server, at a block 1114, the SAC performs layer 4 switching
between the client and the server.

FIG. 12 illustrates a message flow in accordance with an
aspect of the invention. FIG. 12 illustrates a communication
between a client, such as client 102 of FIG. 1, and a server,
such as server 112, employing an intermediate network
device, such as server array controller 110. The flow of pack-
ets isillustrated with a timeline 1250, to show the sequence of
events, though the units of time are not to scale and may vary.

15

30

40

45

60

14

As illustrated in FIG. 12, the client 102 initiates a TCP
handshake by transmitting a SYN packet 1204. The server
array controller (SAC) 110 receives the SYN packet, as dis-
cussed at block 406 (FIG. 4). In response, the SAC sends to
the client a SYN-ACK packet 1206. Unlike the message flow
of FIG. 10, the SYN-ACK packet 1206 can be a standard
initial window size.

The client then responds by sending an ACK packet 1208.
This completes the TCP handshake between the SAC and the
client. The SAC then performs a TCP handshake with the
server. The SAC sends a SYN packet 1210, the server
responds with a SYN-ACK packet 1212, and the server
responds to the server with an ACK packet 1214, similar to the
handshake described in FIG. 5 and related text.

In the event that the client sends a data packet, such as data
packet 1230, to the SAC prior to completion of the SAC-
server TCP handshake completion, the SAC drops the data
packet 1230. It does not store or forward this data packet.
According to the TCP protocol, when the client does not
receive an acknowledgement of the data packet 1230 after a
specified period of time, the client retransmits the data packet.
In order to reduce the time that the client waits before resend-
ing the data packet, when the SAC has completed the TCP
handshake with the server, the SAC transmits three ACK
packets 1232-1236 to the client in rapid succession. This
procedure is done according to the TCP fast retransmit pro-
tocol, described in RFC 2001, available at http://www.faq-
s.org/rfcs/rfc2001. html. The receipt of three successive ACK
packets functions as a signal to the client to resend the data
packet 1230 for which it received no acknowledgement.

Upon receiving this signal, the client resends the data
packet 1230. The resent packet is shown as data packet 1238.
The SAC performs layer 4 switching on this packet, forward-
ing it to the server. The SAC continues performing layer 4
switching with additional data packets, such as data packet
1240 sent from the server.

The variation of the invention illustrated in FIG. 12 and
described above improves the communication between the
client and the server.

FIG. 13 illustrates an aspect of the invention that can be
employed in some embodiments of the invention. The process
1302 illustrated in FIG. 13 can fit into the process 402 of FIG.
4 by beginning prior to action of the block 412 of performing
a layer 7 Syn cookie process. As illustrated in FIG. 13, at a
block 1304, the process determines a trust level correspond-
ing to the incoming packet. A trust level can be based on the
source of the packet, as indicated by the source field. Tech-
niques for determining a trust level are discussed below. A
trust level can be represented in a number of ways. As illus-
trated in FIG. 13, three levels of trust—low, medium, and
high, are employed. The process can also be performed with
two levels, or any number of levels greater than two. The trust
level can also be represented by a value, rather than a discrete
number, so that an infinite number of levels are represented.

At a decision block 1306, a determination is made of the
trust level corresponding to the packet. After the block 1306,
process flow proceeds based on the trust level. Ifthe trust level
is high, flow proceeds to a block 1308, where a Syn cookie
process begins. This can be the action ofthe block 412 of FIG.
4. Flow can then continue as in the process 402 of FIG. 4.

If the trust level is low at the block 1306, process flow
proceeds to a block 1310. At the block 1310, a determination
is made as to whether to drop the packet. This determination
can be made in a random manner to drop a certain percentage
of packets at this level. For example, the process might drop
10% of such packets, and allow 90% of the packets to con-
tinue to the block 1308, where the Syn cookie process begins.

US 9,106,479 B1

15

If the problem of flooding decreases, the percentage of
dropped packets could be lowered. If the problem increases,
the percentage of dropped packets could be increased. If a
legitimate packet is dropped, the TCP protocol will cause the
sender to resend the packet, so the connection can still be
continued.

A block 1312 indicates an action for packets at a medium
level of trust. This is similar to the block 1310, except that a
lower percentage can be used for dropping packets. For
example, if 10% of low trust packets are dropped, 5% of
medium trust packets can be dropped. As discussed for the
low trust packets, the percentage number can be modified
based on changes in the flooding and the available resources.

In one embodiment, a a value representing a trust level is
determined, and the number of packets to drop is determined
based on the trust level value, such that the lower the level of
trust, the higher the probability of dropping the packet.

In one embodiment, the trust level of packets is determined
based on the source network block address corresponding to
the packet, and the recent history of network traffic from that
network block. For example, network blocks having a rela-
tively high number of completed connections can be catego-
rized as high trust. Network blocks that have not had much
recent traffic can be categorized as medium trust. Network
blocks that have a high number of incomplete connections
can be categorized as low trust. The SAC can maintain data
indicating the number of complete or incomplete connections
for each network block. Alternatively, the SAC can maintain
data on completed connections, but not for incomplete con-
nections, and the make categorizations based on the number
of'complete connections. Complete source addresses can also
be used in determining whether to drop a packet. In one
embodiment, the SAC can be configured with addresses that
are to be considered, at least initially, as having a high level of
trust. These addresses are reclassified as lower levels of trust
if a high number of incomplete connections with these
addresses is observed. By doing this, a higher trust can be
given to known sources, but also accommodate situations
where the trusted source addresses are improperly used, as in
spoofing, or for other reasons that cause the addresses to be
less trusted.

It should therefore be understood by the above description,
that aspects of the invention can result in incoming packets
either being processed to initiate a TCP connection, to initiate
a Syn cookie procedure, or to be dropped. This can be done on
one or more of several factors, including whether one or more
resource thresholds have been reached, whether a signal has
been received from a network device, and the source address
of the packet.

In some embodiments of the invention, various aspects and
methods of the invention are performed by a server, such as
one of servers 112-116 of FIG. 1. In these embodiments, there
can be, but is not necessarily, a SAC. For example, a server
may implement one or a combination of the aspects described
of maintaining an RS-MSS table 702, using the RS-MSS
table to generate SISN values as illustrated in FIGS. 6 and 8,
validating a packet as illustrated in FIGS. 9A-B. These and
other aspects of the invention may be practiced by other
network devices that support network protocols such as TCP.

The above specification, examples, and data provide a
complete description of the manufacture and use of the com-
position of the invention. Since many embodiments of the
invention can be made without departing from the spirit and
scope of the invention, the invention resides in the claims
hereinafter appended.

40

45

16

We claim:

1. A method for managing a communication between at
least one client and an array of at least one server on a
network, comprising:

employing layer four switching to receive from a client

device a synchronization (SYN) packet requesting an
initiation of a communication connection, the initiation
being used in performing a first protocol handshake with
a first client device that is the client device;

whenitis determined that a resource threshold is exceeded,
then changing to use layer seven processing to perform
actions, including:
sending a synchronization-acknowledgement (SYN-
ACK) to the client device, the SYN-ACK including a
server initial sequence number (SISN) that has
embedded within it a maximum segment size (MSS)
index to an MSS value in an MSS table, wherein each
bit location of the MSS index in the SISN is deter-
mined by a periodically changing MSS mapping
value, and wherein remaining bits in the SISN are
based on a seed value that corresponds to the MSS
mapping value;
determining that an ACK received from the client device
is valid when a hash value that is based on the seed
value matches an ACK hash value that is extracted
from the SISN in the ACK based on the MSS mapping
value;

in response to receiving a valid ACK from the client
device, performing at level seven processing a con-
nection initiation with the at least one server that is
used in performing a second protocol handshake with
a target server that is the at least one server, to initiate
establishing connections with the client device and
the at least one server; and

when the establishment of the connection is initiated at
layer seven, transitioning from layer seven processing to
layer four processing to communicate data packets used
for at least a connection initiate handshake protocol and
a connection terminate handshake protocol, or other
data packets used for more than just establishing con-
nections between the client device and the at least one
server using the established connections, wherein layer
four and seven are layers within the Open Systems Inter-
connection (OSI) protocol stack.

2. The method of claim 1, wherein the method operates
within a network device operating as a server array controller
between the at least one client and the array of at least one
server.

3. The method of claim 1, wherein the receiving the valid
ACK from the client device further comprises retrieving from
the SISN the MSS index.

4. The method of claim 1, further comprising when it is
determined that the resource threshold is exceed:

(a) instructing the client device to delay sending data at
least until the ACK from the client device is validated.

5. In an intermediate network device, a method for man-
aging a communication between a client and a server on a
network, comprising:

employing layer four switching to receive from a client

device a synchronization (SYN) packet requesting an
initiation of a communication connection that is used in
performing a first protocol handshake with the client
device;

US 9,106,479 B1

17

when it is determined that a resource threshold is exceeded,
then changing to use layer seven processing to perform
actions, including:
sending a synchronization-acknowledgement (SYN-
ACK) to the client device, the SYN-ACK including a
server initial sequence number (SISN) that has
embedded within it a maximum segment size (MSS)
index to an MSS value in an MSS table, wherein each
bit location of the MSS index in the SISN is deter-
mined by a periodically changing MSS mapping
value, and wherein remaining bits in the SISN are
based on a seed value that corresponds to the MSS
mapping value;
determining that an ACK received from the client device
is valid when a hash value that is based on the seed
value matches an ACK hash value that is extracted
from the SISN in the ACK based on the MSS mapping
value;
in response to receiving a valid ACK from the client
device, performing at level seven processing a con-
nection initiation with the at least one server, to ini-
tiate establishing connections with the client device
and the at least one server that is used to perform a
second protocol handshake with the at least one server
that is a target server; and
when the establishment of the connection is initiated at
layer seven, transitioning from layer seven processing to
layer four processing to communicate data packets used
for a connection initiate handshake protocol and a con-
nection terminate handshake protocol, or other data
packets used for more than just establishing connections
between the client device and the at least one server
using the established connections, wherein layer four
and seven are layers within the Open Systems Intercon-
nection (OSI) protocol stack.
6. An apparatus for managing a communication between a
client and a server on a network, comprising:
a network interface unit that receives and sends communi-
cations; and

10

15

20

25

30

35

18

a processing component that performs actions, including:
employing layer four switching to receive from a client

device a synchronization (SYN) packet requesting an
initiation of a communication connection that is used
in performing a first level protocol handshake with the
client device;

when it is determined that a resource threshold is

exceeded, then changing to use layer seven process-

ing to perform actions, including:

sending a synchronization-acknowledgement (SYN-
ACK) to the client device, the SYN-ACK including
a server initial sequence number (SISN) that has
embedded within it a maximum segment size
(MSS) index to an MSS value in an MSS table,
wherein each bit location of the MSS index in the
SISN is determined by a periodically changing
MSS mapping value, and wherein remaining bits in
the SISN are based on a seed value that corresponds
to the MSS mapping value;

determining that an ACK received from the client
device is valid when a hash value that is based on
the seed value matches an ACK hash value that is
extracted from the SISN in the ACK based on the
MSS mapping value;

in response to receiving a valid ACK from the client
device, performing at level seven processing a con-
nection initiation with the at least one server that is
used in performing a second protocol handshake
with a target server that is the at least one server, to
initiate establishing connections with the client
device and the at least one server; and

when the establishment of the connection is initiated at

layer seven, transitioning from layer seven processing
to layer four processing to communicate data packets
used for a connection initiate handshake protocol and
a connection terminate handshake protocol, or other
data packets used for more than just establishing con-
nections between the client device and the at least one
server using the established connections, wherein
layer four and seven are layers within the Open Sys-
tems Interconnection (OSI) protocol stack.

#* #* #* #* #*

